Atoms, Molecules, and Ions

"According to convention there is a sweet and a bitter, a hot and a cold, and according to convention there is a color. In truth there are atoms and a void."

Democritus, 5th century B.C.
"... there must be some point beyond which we cannot go in the division of matter. The existence of these ultimate particles of matter can scarcely be doubted, though they are probably much too small ever to be exhibited by microscopic improvements. I have chosen the word atom to signify those ultimate particles ... [which for] all homogeneous bodies are perfectly alike in weight, figure, etc. In other words, every particle of hydrogen is like every other particle of hydrogen"

John Dalton, 1808

Atomic Theory of Matter (Dalton)

Conservation of Mass
Laws of
Definite Proportions
Multiple Proportions

Avogadro's Hypothesis

Building Blocks of the Atom

Periodicity

Nomenclature (Elements, Ions, Cmps) - KNOW

Prelabs: 1) ALL prelab assignments submitted before lab begins 2) remainder of prelab a) ONLINE - submitted before lab begins or b) IN-PERSON - checked by TA before experiment begins
ALL Lab Reports: ONE PDF which contains the entire prelab (even if a component previously submitted)

FRIDAY
"W" OWL homework due
TA OFFICE HOURS
posted on Blackboard next week
ALL emails: class, include TA

Prefixes

every third power of 10
Table I-3 Prefixes

Prefix	Symbol	Factor	Prefix	Symbol	Factor
yotta	Y	10^{24}	deci	d	10^{-1}
zetta	Z	10^{21}	centi	c	10^{-2}
exa	E	10^{18}	milli	m	10^{-3}
peta	P	10^{15}	micro	μ	10^{-6}
tera	T	10^{12}	nano	,	10^{-9}
giga	G	10^{9}	pico	p	10^{-12}
mega	M	10^{6}	femto	f	10^{-15}
kilo	k	10^{3}	atto	a	10^{-18}
hecto	h	10^{2}	zepto	z	10^{-21}
deca	da	10^{1}	yocto	y	10^{-24}

\qquad 0

Precision, Accuracy, and Experimental Error

True Value

> LSL - Lower Set Limit
> USL -Upper Set Limit
accuracy - deviation from true value (systematic error)
precision - agreement of replicate measurements (random error)
standard deviation, $s=\sqrt{\sum_{i}\left[\left(x_{i}-\langle x\rangle\right)^{2}\right] /(n-1)}$

Calculating a Standard Deviation

EX 1. A student makes the following six independent measurements of pressure, P, in torr

$$
762.2,761.8,762.0,761.5,762.2, \text { and } 760.0
$$

Calculate the average value of P and its standard deviation. (NOTE: useful for lab reports!)

$$
\begin{aligned}
&\langle P\rangle=(762.2+761.8+762.0+761.5+766.2+760.0) / 6=761.6166=>761.6 \\
& \text { standard deviation } \\
& \text { mean to report }
\end{aligned}
$$

Pre-Atomic Theory of Matter

ancient Greek, Indian, Chinese philosophy - matter composed of four "elements": air, earth, fire, water Heraclitus (535-475 BC; Greek philosopher in Asia Minor) everything in a state of flux, becoming, element fire; Parmenides (515-450 BC, Greek philosopher in southern Italy) change is impossible, being Leucippus (480-420 BC; Greek philosopher) and his student Democritus (460-371 BC; mathematician, astronomer, physicist; traveled to India, Babylon, Persia, Egypt, Ethiopia?) - postulated existence of atoms - tiny particles always in motion, interacted by collision; all change due to motion of atoms
Epicurus (341-270 BC, Greek philosopher) refined Democritus theory, he and Pythagoreans atomists $6^{\text {th }}$ century BC - Hindu Kanada - cannot infinitely divide matter, Jainas ($3^{\text {rd }}$ century AD) were atomists Socrates \rightarrow Plato \rightarrow Aristotle (384-322 BC, Greek philosopher, physicist, biologist) - knowledge proceeds from observation, only four elements, atoms rejected as implausible since could not be perceived by the senses; Stoics, Cicero, Seneca, St. Augustine (354-430 AD) opposed atomism
Lucretius (99-55 BC; Roman poet, philosopher) explained numerous natural processes by atoms, even negating necessity of a supreme being - branded an atheist, atomism condemned.

Venerable Bede (762-735 AD) was an atomist
medieval Arabic speaking world the intellectual tradition of kalam supported atomism; Rhazes - Abu Bakr al-Razi (841-926; Persian physician, philosopher, astronomer, alchemist)

"Modern" Pre-Atomic Theory

in $12^{\text {th }}$ century works of Aristotle rediscovered, brought back concept of an atom, controversy heightened in $14^{\text {th }}$ century; Epicureanism contradicted orthodox Christian teachings, it was a "heresy"

Pierre Gassendi (1592-1655) got around the objection by stating that atoms were created by God
Rene Descartes (1596-1650), Issac Newton (1642-1727), Robert Boyle (1627-1691) defended atomism; generally accepted by end of $17^{\text {th }}$ century.

1775 - Lavoisier (combustion of Hg) => law of conservation of mass
1799 - Proust (amount of O in Fe oxide) => law of definite proportions: "In a given chemical compound the proportions by mass of the elements that comprise it are fixed ..."

1803 - Dalton law of multiple proportions ("When two elements form a series of compounds the masses of one element that combine with a fixed mass of the other element are in the ratio of small integers to each other.")

Dalton used atomic theory to explain via an empirical process of experimentation and analysis - flaw did not realize that some elements were composed of more than one atom and that simplest combination was not always 1 atom of each element

Law of Multiple Proportions

EX 3. Chlorine (Cl) and oxygen form four different binary compounds. Analysis gives the following results
a) Show that the law of multiple proportions holds for these compounds.
cmpd mass O combined with 1.0000 g Cl

A	0.22564 g	$\mathrm{~B} / \mathrm{A}=0.90255 / 0.22564=3.9999 \ldots=4$
B	0.90255	$\mathrm{C} / \mathrm{A}=1.3539 / 0.22564=5.9998 \ldots=6$
C	1.3539	D/A $=1.5795 / 0.22564=7.0000 \ldots=7$
D	1.5795	

b) If the formula of compound A is a multiple of $\mathrm{Cl}_{2} \mathrm{O}$, then determine the formulas of the other compounds.

Note: $\mathrm{B} / \mathrm{A}=\left(m_{\mathrm{O}} / m_{\mathrm{Cl}}\right)_{\mathrm{B}} I\left(m_{\mathrm{O}} / m_{\mathrm{Cl}}\right)_{\mathrm{A}}=\left(m_{\mathrm{O}} \div M_{\mathrm{o}} / m_{\mathrm{Cl}} \div M_{\mathrm{Cl}}\right)_{\mathrm{B}} I\left(m_{\mathrm{O}} \div M_{\mathrm{o}} I m_{\mathrm{Cl}} \div M_{\mathrm{Cl}}\right)_{\mathrm{A}}=\left(n_{\mathrm{O}} / n_{\mathrm{Cl}}\right)_{\mathrm{B}} I\left(n_{\mathrm{O}} / n_{\mathrm{Cl}}\right)_{\mathrm{A}}$
then $\mathrm{A}=x\left(\mathrm{Cl}_{2} \mathrm{O}\right)=>\left(n_{\mathrm{O}} / n_{\mathrm{Cl}}\right)_{\mathrm{A}}=1 / 2$
so

$$
\begin{array}{llll}
\mathrm{B} / \mathrm{A}=4 \Rightarrow \mathrm{Cl}_{2} \mathrm{O}_{4} & \mathrm{ClO}_{2} & \mathrm{Cl}_{3} \mathrm{O}_{6} \\
\mathrm{~B} / \mathrm{A}=6=\mathrm{Cl}_{2} \mathrm{O}_{6} & \mathrm{ClO}_{3} & \mathrm{Cl}_{3} \mathrm{O}_{9} \\
\mathrm{~B} / \mathrm{A}=7=\mathrm{Cl}_{2} \mathrm{O}_{7} & &
\end{array}
$$

law of multiple proportions is based on mole ratios

Atomic Theory

1803 - Dalton's Atomic Theory

all matter consists of individual atoms
atoms are indestructible
all atoms of the same element are identical
different elements have different kinds of atoms
compounds formed from elements combining in small whole-number ratios
1808 - Guy-Lussac: gases (same T, P) combine in simple whole number ratios
1811 - Avogadro's Hypothesis - equal V (gas; same T, P) contain equal number of particles

$$
P V=n R T \Rightarrow \quad n=P V I R T
$$

Avogadro's law corrected Dalton's flaw and showed that many gases exist as diatomics

1860 - Cannizzaro: experiments convinced world that Avogadro was correct

Building Blocks of Atoms electrons, protons, neutrons (electrons and quarks!)

FIG I. 1897 - Thomson: charge/mass of e^{-} (Plum Pudding Model, $\mathrm{e}^{-}+$cloud of charge)

deflects up etic field $(\mathbf{N} \rightarrow \mathbf{S}) \uparrow$ ic field $(-\underset{\text { deflects down }}{\downarrow}$

FIG III. 1909 - Geiger/Marsden (α off Au) ${ }_{2}^{4} \mathrm{He}^{2+}$
(nuclear model - V, e^{-}; m small + nucleus)
1898 - Rutherford discovered α, β (1908 Nobel)
1911 - explanation, nucleus (mass, + charge)
1919 - discovers proton
1932 - Chadwick discovers neutron

FIG II. 1909 - Mulikan: charge (oil drop exp)
gas in chamber ionized, $\mathrm{e}^{->} \mathrm{s}$ produced adhere to droplets gravity \downarrow
electric field $(-\longrightarrow+) \uparrow$

Basics of the Atom

small, dense world - example of an atom of gold diameter of a nucleus, $10^{-15} \mathrm{~m}$ diameter of an atom, $10^{-10} \mathrm{~m}$ density of $2.3 \times 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$
$Z=$ atomic number (number of protons)

particle	charge	atomic mass units (amu)
electron	-1	0.000548579911
proton	+1	1.0072764669
neutron	0	1.0086649158

designation
Mass number

Atomic number

$\mathrm{A}=$ mass number (sum of the numbers of protons and neutrons) - there can be isotopes

leptons (e.g., electrons) and quarks are the true elementary particles of matter

$$
\begin{aligned}
& \text { proton }-2 u(+2 / 3)+1 d(-1 / 3) \\
& \text { neutron }-2 d(-1 / 3)+1 u /(+2 / 3)
\end{aligned}
$$

Two Isotopes of Sodium
differ in number of neutrons

Structure of Helium Nucleus (${ }_{2}{ }^{2} \mathrm{He}$)

$$
\begin{aligned}
& \text { Atom } \\
& -10^{-10} \mathrm{~m}
\end{aligned}
$$

Nucleus

$$
-10^{-14} \mathrm{~m}
$$

$$
\begin{aligned}
& \text { Electron } \\
& <10^{-18} \mathrm{~m}
\end{aligned}
$$

Neutron

If the protons and neutrons were 10 cm wide. then the quarks and electrons would be less than 0.1 mm and the entire alom would be about 10 km in diameter.

Periodicity and Nomenclature

"...I have tried to base a system on the magnitudes of the atomic weights of the elements. My first attempt in this respect was the following: I chose the smallest atomic weights and arranged them according to the sizes of their atomic weights. This showed that there existed a periodicity in the properties of these simple substances and that even according to their atomicity [valence] the elements followed one another in the arithmetical sequence of their atomic weights."

Dimitri Ivanovich Mcndeleyev (Mendeleev), 1869

1. Periodic Table Organization
2. Some Properties Observed in the Periodic Table
3. Nomenclature

EXTREMELY IMPORTANT FOR QUANTUM CHEMISTRY - CHEM 118

"The periodicity in the properties of the elements is connected with the continuing build up and completion of the various electron groups that takes place with increasing atomic number."

Niels Henrik David Bohr, 1923 (Nobel Prize in Physics in 1922 "for his services in the investigation of the structure of atoms and of the radiation emanating from them".)

Spiral Periodic Table, Theodor Benfey, 1964

The Periodic Table

Its Organization, and Chemistry (a beginning ...)

The Periodic Table

Its Organization, and Chemistry (a beginning ...)

Major Classification

metals
nonmetals metalloids (semimetals)

Periods/Groups

main group
transition
lanthanides
actinides

Main Group Elements

alkali metals alkaline earth metals chalcogens halogens noble gases

Electronegativity

Acidic/Basic

basic oxides $\left(\mathrm{Na}_{2} \mathrm{O}\right)$ acidic oxides $\left(\mathrm{SO}_{3}\right)$ amphoteric $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$

